AI Task¶
Overview¶
AI Tasks are designed for intelligent processing operations using artificial intelligence capabilities. These tasks can handle complex operations like text analysis, content generation, and data processing.
Visual Example¶
Configuration Structure¶
{
"type": "TASK",
"block": {
"name": "AI Task Name",
"type": "TASK",
"instructions": "Detailed instructions for the AI",
"input_parameters": [],
"expected_output": [],
"dependencies": [],
"error_policy": "RAISE"
}
}
Required Fields¶
Field | Type | Description | Required |
---|---|---|---|
name | string | Unique identifier for the task | Yes |
instructions | string | Clear instructions for processing | Yes |
input_parameters | array | Input configuration | Yes |
expected_output | array | Output configuration | Yes |
dependencies | array | List of dependent tasks | No |
error_policy | string | Error handling strategy | No |
Input Parameters¶
Text Input¶
{
"name": "input_text",
"type": "STRING",
"description": "Text content to process",
"required": true,
"source": "task_config"
}
Structured Data Input¶
{
"name": "data_object",
"type": "OBJECT",
"description": "Structured data for analysis",
"properties": [
{
"name": "field1",
"type": "STRING",
"description": "First field"
},
{
"name": "field2",
"type": "INTEGER",
"description": "Second field"
}
]
}
Array Input¶
{
"name": "items",
"type": "ARRAY",
"description": "List of items to process",
"items": {
"type": "STRING"
}
}
Output Parameters¶
Basic Output¶
Analysis Output¶
{
"name": "analysis",
"type": "OBJECT",
"properties": {
"sentiment": {
"type": "STRING",
"description": "Detected sentiment"
},
"confidence": {
"type": "FLOAT",
"description": "Confidence score"
},
"categories": {
"type": "ARRAY",
"items": {
"type": "STRING"
},
"description": "Detected categories"
}
}
}
Common Use Cases¶
1. Text Analysis¶
{
"name": "Analyze Text",
"instructions": "Analyze the input text for sentiment and key topics",
"input_parameters": [
{
"name": "text",
"type": "STRING",
"description": "Text to analyze",
"required": true
}
],
"expected_output": [
{
"name": "analysis",
"type": "OBJECT",
"properties": {
"sentiment": "STRING",
"topics": "ARRAY",
"summary": "STRING"
}
}
]
}
2. Content Generation¶
{
"name": "Generate Content",
"instructions": "Generate content based on provided parameters",
"input_parameters": [
{
"name": "topic",
"type": "STRING",
"description": "Content topic",
"required": true
},
{
"name": "style",
"type": "STRING",
"description": "Writing style",
"required": true
},
{
"name": "length",
"type": "INTEGER",
"description": "Target word count",
"required": true
}
],
"expected_output": [
{
"name": "content",
"type": "STRING",
"description": "Generated content"
}
]
}
Best Practices¶
1. Writing Instructions¶
✅ Do:
- Be specific and clear
- Include examples when helpful
- Specify format requirements
- Define expected behavior
❌ Don't:
- Use vague descriptions
- Omit important details
- Assume context
2. Input Configuration¶
✅ Do:
- Validate input types
- Set required fields
- Provide clear descriptions
- Use appropriate types
❌ Don't:
- Use overly complex structures
- Skip parameter descriptions
- Ignore validation
3. Output Configuration¶
✅ Do:
- Define clear structure
- Include all necessary fields
- Document format requirements
- Handle error cases
❌ Don't:
- Use ambiguous types
- Omit error handling
- Ignore edge cases
Error Handling¶
Error Policies¶
{
"error_policy": "RAISE", // Stop on error
"error_policy": "IGNORE", // Continue execution
"error_policy": "RETRY" // Retry on failure
}
Validation¶
- Input validation
- Output validation
- Error reporting
Examples¶
Text Classification¶
{
"name": "Classify Text",
"instructions": "Classify the input text into predefined categories",
"input_parameters": [
{
"name": "text",
"type": "STRING",
"description": "Text to classify",
"required": true
},
{
"name": "categories",
"type": "ARRAY",
"items": {
"type": "STRING"
},
"description": "Available categories",
"required": true
}
],
"expected_output": [
{
"name": "classification",
"type": "OBJECT",
"properties": {
"category": "STRING",
"confidence": "FLOAT",
"alternatives": "ARRAY"
}
}
]
}
Common Issues and Solutions¶
Issue | Solution |
---|---|
Unclear Instructions | Provide specific, detailed instructions |
Input Validation Fails | Check input types and requirements |
Output Mismatch | Verify output structure matches requirements |
Performance Issues | Optimize input/output size |
Integration with Other Tasks¶
Passing Results¶
graph TD
A[AI Task] --> B[Human Task]
A --> C[App Task]
A --> D[Coder Task]