Skip to content

Task Examples

Overview

This guide provides practical examples of task configurations for common use cases. Each example includes complete configuration and explanation.

Content Review Workflow

1. Generate Content (AI Task)

{
    "type": "TASK",
    "block": {
        "name": "Generate Blog Post",
        "instructions": "Generate a blog post about the provided topic following brand guidelines",
        "input_parameters": [
            {
                "name": "topic",
                "type": "STRING",
                "description": "Blog post topic",
                "required": true,
                "source": "task_config"
            },
            {
                "name": "tone",
                "type": "STRING",
                "description": "Writing tone",
                "required": true,
                "source": "task_config"
            },
            {
                "name": "word_count",
                "type": "INTEGER",
                "description": "Target word count",
                "required": true,
                "source": "task_config"
            }
        ],
        "expected_output": [
            {
                "name": "content",
                "type": "STRING",
                "description": "Generated blog post content"
            }
        ]
    }
}

2. Review Content (Human Task)

{
    "type": "HUMAN_TASK",
    "block": {
        "name": "Review Blog Post",
        "instructions": "Review the generated blog post for quality, accuracy, and brand alignment",
        "dependencies": ["Generate Blog Post"]
    }
}

3. Format Document (App Task)

{
    "type": "APP_TASK",
    "block": {
        "name": "Create PDF",
        "provider": "pdf",
        "tool_name": "writer",
        "tool_id": 12,
        "input_parameters": [
            {
                "name": "content",
                "type": "STRING",
                "description": "Blog post content",
                "required": true,
                "source": "task_config"
            },
            {
                "name": "template",
                "type": "STRING",
                "description": "PDF template",
                "required": true,
                "source": "task_config"
            }
        ],
        "expected_output": [
            {
                "name": "pdf_url",
                "type": "STRING",
                "description": "URL of the generated PDF"
            }
        ],
        "dependencies": ["Review Blog Post"]
    }
}

Data Processing Workflow

1. Process Data (Coder Task)

{
    "type": "CODER",
    "block": {
        "name": "Process CSV Data",
        "code_artifact_id": 123,
        "input_parameters": [
            {
                "name": "csv_data",
                "type": "ARRAY",
                "description": "Raw CSV data",
                "required": true,
                "source": "task_config"
            },
            {
                "name": "processing_rules",
                "type": "OBJECT",
                "description": "Data processing rules",
                "required": true,
                "properties": [
                    {
                        "name": "columns",
                        "type": "ARRAY",
                        "description": "Columns to process"
                    },
                    {
                        "name": "aggregation",
                        "type": "STRING",
                        "description": "Aggregation method"
                    }
                ]
            }
        ],
        "expected_output": [
            {
                "name": "processed_data",
                "type": "ARRAY",
                "description": "Processed data"
            }
        ]
    }
}

2. Validate Results (AI Task)

{
    "type": "TASK",
    "block": {
        "name": "Validate Data",
        "instructions": "Analyze the processed data for anomalies and validation issues",
        "input_parameters": [
            {
                "name": "data",
                "type": "ARRAY",
                "description": "Processed data to validate",
                "required": true
            }
        ],
        "expected_output": [
            {
                "name": "validation_result",
                "type": "OBJECT",
                "properties": {
                    "is_valid": "BOOLEAN",
                    "issues": "ARRAY",
                    "recommendations": "ARRAY"
                }
            }
        ],
        "dependencies": ["Process CSV Data"]
    }
}

3. Review Results (Human Task)

{
    "type": "HUMAN_TASK",
    "block": {
        "name": "Review Results",
        "instructions": "Review the processed data and validation results. Approve if accurate or reject for reprocessing.",
        "dependencies": ["Validate Data"]
    }
}

Document Generation Workflow

1. Gather Data (App Task)

{
    "type": "APP_TASK",
    "block": {
        "name": "Fetch Data",
        "provider": "database",
        "tool_name": "query_executor",
        "tool_id": 34,
        "input_parameters": [
            {
                "name": "query_params",
                "type": "OBJECT",
                "description": "Query parameters",
                "required": true
            }
        ],
        "expected_output": [
            {
                "name": "query_results",
                "type": "ARRAY",
                "description": "Query results"
            }
        ]
    }
}

2. Generate Report (Coder Task)

{
    "type": "CODER",
    "block": {
        "name": "Generate Report",
        "code_artifact_id": 456,
        "input_parameters": [
            {
                "name": "data",
                "type": "ARRAY",
                "description": "Report data",
                "required": true
            },
            {
                "name": "template",
                "type": "STRING",
                "description": "Report template",
                "required": true
            }
        ],
        "expected_output": [
            {
                "name": "report",
                "type": "OBJECT",
                "properties": {
                    "content": "STRING",
                    "metadata": "OBJECT"
                }
            }
        ],
        "dependencies": ["Fetch Data"]
    }
}

Task Combinations

AI + Human Review

graph TD
    A[AI Analysis] --> B[Human Review]
    B -- Approved --> C[Next Task]
    B -- Rejected --> A

App + Coder Processing

graph TD
    A[App Data Fetch] --> B[Coder Processing]
    B --> C[Result Storage]

Best Practices

  1. Task Dependencies

    • Keep chains simple
    • Validate data flow
    • Handle all outcomes
  2. Error Handling

    • Define recovery paths
    • Set retry policies
    • Log errors properly
  3. Performance

    • Optimize data transfer
    • Set appropriate timeouts
    • Monitor execution time